Tuesday, December 31, 2013




The IAPG section of Brazil


At the end of 2013, we welcome to the IAPG section of Brazil.

Prof. Eduardo Marone, Associate Professor at the Federal University of Paraná, Director of the Centre for Marine Studies and Director of the Operational Centre of the International Ocean Institute for the South Atlantic, is the responsible of the IAPG-Brazil.

Monday, December 30, 2013




The IAPG section of India


The IAPG section of India has been established on December, 2013.

Thanks to Vijay Mohan Sharma (President), Surya Gupta Parkash (Vice-President), Ravinder Singh (Secretary), Heman Manchanda (Treasurer), Ashis Saha (Executive member), Pramod Chandra Nawani (Executive member), Anil Sinha (Executive member), Ashok Sharma (Executive member), Dushyant Mohil (Executive member).

Today, the IAPG-India counts on 40 members.

IAPG-India website: 

Friday, December 27, 2013





The IAPG section of Democratic Republic of Congo


The IAPG section of Democratic Republic of Congo has been established on December, 2013.

Jean-Robert Nshokano Mweze, Research geologist at the Centre de Recherches Géologiques et Minières (CRGM), is the IAPG responsible for the DR - Congo.

Tuesday, December 17, 2013


Second International Conference on Geoparks 
in Africa and Middle East (ICGAME)

Geoheritage for local socio-economic sustainable development


(Dakar, Senegal, 1-4 October 2014)


The African Geoparks Network “AGN” was initiated during the pre-congress of the fifth conference of the AAWG held in Abidjan, Ivory Coast in May 2009. The AGN aims to identify, promote, and advise on the importance and preservation of geoheritage in Africa in collaboration with other stakeholders. In that framework, the AGN collaboration with AAWG, ANRSA and UCAD are organizing the second International Conference on East in 2014 in Dakar Senegal. The First edition was organized in 2011 in Morocco.
All researchers in the fields of geoheritage, geotourism, conservation, environment and sustainable development, policy makers, economists, geopark and local community administrators and leaders, NGOs, business operators, interest in geoheritage development are invited to participating
making this event a success.

The IAPG participates in the Steering and Scientific Committees for the success of this important event.

First circular:









Friday, December 13, 2013


To play the geoengineering puzzle?

by 
Martin Bohle*

* Directorate General Research and Innovation, European Commission, 1049 Brussels, Belgium

Disclaimer: the views expressed in this paper solemnly engage the author.

Humans are engineers, even the artists. Human environment, the landscapes surrounding us are created by mankind. Intentional and unintentionally we do engineer the surface of the globe. Should we endeavour to engineer the Earth to counter climate change?
Nine billion people living like European citizens would blow up the globe. Up-scaling European production and consumption patterns by a factor 20 is non-sustainable, and its down-scaling does not look feasible. Keeping current global imbalances of wealth and poverty does not seem fair. What would be a fair compromise? Agreement on that compromise is what climate change negotiations are about.
Striving towards "global sustainability" will require to adjust the current production and consumption patterns. Without such adjustments, whatever these adjustments may be in detail, it seems unlikely to limit climate change to moderate scenarios of temperature increase and sea-level rise. Contrary to a negotiated approach towards global sustainability, "geoengineering" is understood to deploy a "technology fix" for the same purpose, namely to limit climate change avoiding a major adjustment of current production and consumption patterns.
Evidently, human pressure on global systems is immense; unintentional terraforming is taken place. Modern terraforming is going well beyond replacing pristine wilderness by rural landscapes. Because of the power of human force a new geological epoch, the "Anthropocene" is starting; at least that is postulated by some. Evidently, if climate change is modulated by human geoengineering then current times are the "Anthropocene", par definition.

State of Planet Declaration: "Research demonstrates that the continued functioning of the Earth system as it has supported the welfare of human civilization in recent centuries is at risk. Without action, we could face threats to water, food, biodiversity and other critical supplies: these threats risk intensifying economic, ecological and social crises, creating the potential for a humanitarian emergency on a global scale.
In one human lifetime, an increasingly interconnected and interdependent economic, social, cultural and political systems have come to place. These systems put pressures on the environment that may cause fundamental changes in the Earth system and move us beyond safe natural boundaries. However the same interconnectedness provides the potential for solutions: new ideas can develop and propagate quickly, creating the momentum for the significant transformation required for a truly sustainable planet.
The defining challenge of the modern era is to safeguard Earth's natural processes to ensure the welfare of civilization while eradicating poverty, reducing conflict over resources, and supporting human and ecosystem health.
As consumption accelerates everywhere and world population rise, it is no longer sufficient to work towards a distant ideal of sustainable development. Global sustainability must become a foundation of society. It can and must be part of the bedrock of nation states and the fabric of societies." [a]

Four scenes from the stage
Imagine! Your are on an intercontinental flight. The flight is well packed. It is warm in the cabin, too warm, and not really comfortable. The crew announces that the cooling system should be re-engineered in-flight because it is insufficient for the high number of passengers on the flight. You learn that preparatory work will start soon, that the Oxford principles [b] have been respected and that so experiments would be undertaken soon. How would you respond?
Recall and imagine! Oil-based fossil-energy-age is halfway; the moment of peak oil is close. The planet is well packed with people. It is getting warmer. It is not comfortable. The chef-scientists of the G8 consider that geoengineering should fix that by providing additional cooling for the planet. You learn that preparatory work will start soon with some experiments. How would you respond?
Recently the science magazine "Physics Today" [1] discussed why an experiment of the SPICE project "stratospheric particle injection for climate change" had been cancelled. The experiment foresaw to spray particle loaded water into the atmosphere 1000 meters above ground level [c]. The purpose of the experiment was to research how reflective particles in the atmosphere behave; one of the hypotheses to mitigate global warming. The experiment was designed to have no environmental impact. The experiment apparently was cancelled because proper governance of geoengineering experiments is lacking, including addressing of patenting. Would you support that?
Recently the science journal "Nature" reported that injection of volcanic ash into the troposphere was planned to happen some days after publication of the article [2]. Ash-particles in the stratosphere modulate global temperature; for example, seasonal temperature dropped after massive volcanic eruptions, which injected ash into the stratosphere. Injection of 50 barrels of volcanic ash into the atmosphere at 3000 and 4000 meters altitude off the west coast of France should test an aircraft sensor for volcanic ash-hazards. It was planned to fly through "the largest artificial ash cloud ever made". The experiment was not reported to have had an environmental impact. The experiment was not cancelled because governance of geoengineering experiments is lacking. Would you support that?

Pieces of a puzzle
Considering the current state of moderating climate change, human capability to reduce its overall pressure on global systems seems to be limited, even if consumption of top-consumers is capped. On the contrary, human consumption of resources and pressure on global systems likely will increase as people of developing countries arise from poverty. Most people of the globe are living at relatively low levels of consumption. Their level of consumption will increase to get a fair share of the global resources; whatever fair may mean once someone does not live in poverty. 
Their experiences made Humans much inclined to look for technological fixes for problems because that is what experiences taught. This approach, technological fixes had worked in the past and is something in which humans are good at. On the other side, the design and rolling-out of sustainable ways of economic and social functioning are a fringe activity in industrialised societies; they are getting their publicity, but little more. The German "Energiewende", the attempt to replace in a decade-long process fossil-energy by renewable energies are mainly a technological project. However, what is wrong in focusing human efforts on methods in which mankind is strong?
Well engineered technological methods have created our modern societies. Thes experiences are seen as a success at most places over the globe; whatever doubts emerged somewhere and sometime. Thus, it seems obvious to apply an engineering solution to climate change or global change issues too. In particular, as the identified, or the supposed, or the perceived threats to the environment of the past have been addressed successfully just in that manner. Air pollution causing acid rains has been reduced by cleaner combustion processes; ozone destructing chemical coolants have been replaced by other substances; genetically modified organisms got regulated by imposing restrictions on use; nanotechnology gets assessed for the limits of use-cases. 
So far, a combination of public awareness and political concern, of technological fixes and negotiated regulatory actions has been applied to limit threats to regional and global systems, which were caused by pressure of human production and consumption patterns. So far, none of these methods, which were put in place, neither the technological fixes nor the regulations had to put into question the consumption pattern of the modern industrialised societies. Also so far, these methods were enough to reduce pressure on global or regional systems by reducing inputs without impacting on current production and consumption patterns. Common to these methods was to reduce inputs into global or regional systems by withholding emission, replacing substances or limiting use cases for certain substances. Thus, in these cases the selected approach was a technological fix or regulatory measure targeting the "start of the pipe". Mature solutions to environmental threats replace "end of pipe" approaches with "start of the pipe" solutions; handling sewage water being the most pertinent historical example. What are situations in which "start of the pipe" are less appealing?
Applying a "start of the pipe" approach to climate change faces the issue that mankind should reduce inputs were its hurts, namely reducing radically energy that is produced from burning fossil fuels. Capping burning of fossil fuels would be disruptive for the economic structures or the consumption pattern of the developed and developing industrialised societies. In addition, the disruptive change should take place in a manner that is coordinated at the scale of the globe. This seems a recipe for a "mission impossible". The pace of negotiations on climate change matters clearly shows this. On the other hand, the consequences of a run-away climate change and the price of business as usual scenario looks forbiddingly high, as well in economic as in social costs that likely will be caused by climate change. Facing that dilemma affordable geoengineering looks tempting for some. Mankind could build on its strength, avoids disruption of the economic structures or the consumption pattern. The immediate downside of doing geoengineering is the feeling to get "in-flight re-engineered"; notwithstanding that geoengineering methods would have to be tested, evaluated, agreed and regulated before being deployed. By whom?
However geoengineering technologies, which counter climate change by other means than carbon capture at combustion, are of a different nature than the technological fixes and negotiated regulatory actions, which have been applied to limit threats to regional and global systems. Increasing the surface albedo to increase backscattering of sun-light, sheltering sun-light by aerosols or clouds in the higher atmosphere, capturing excess carbon by ocean fertilisation, afforestation etc.; all these technologies target other parts of the climate system but the carbon-dioxide input into the atmosphere. Therefore, many geoengineering technologies differ qualitatively because they do not tackle the initial cause, namely the carbon-dioxide inputs that are too high. Possibly, a technology that reduces inputs at the sources might gain more easily public support for its application. That may happen at least "in principle" and under the assumption that its cost is considered to be appropriate. Whatever appropriate may mean in a given situation, likely "appropriate" would mean that the cost would not be disruptive for the current economic structures or consumption patterns. Is that a pessimistic view?
In analogy to geoengineering; suppose that your ship has a leakage. Would you propose a lasting solution by installing stronger pumps and advocate heavier pumping? Such a proposal might be accepted in an emergency situation, and only if you propose a proven technique. Astonishingly, the Dutch do so for a substantial part of their country since centuries, and they plan to do so with rising sea level. But where else the Dutch people would like to be but in the Netherlands. Where else they could go? Thus, plan-fully the Dutch step up norms and constructions to face a sea-level rise of one meter in a century. They run their pumps to keep the water out "behind the dike" as they did it since centuries. In a more desperate situation people also would opt for "trial and error method" to confine a threat. This was done very much to confine the damaged nuclear reactors after the Chernobyl and Fukushima accidents. How massive these confinement activities may have been, they were deployed only on a very small scale compared to what geoengineering would involve. So far for analogies; but what about developing and testing "technological fixes", i.e. "stronger pumps", as long as you have the opportunity to do so without being driven by an emergency situation? Would it be appropriate to develop in a regulated manner some affordable geoengineering technologies, just in the case to have these technologies available if other methods fail? 

A preliminary insight
Generally, "the acceptability of geoengineering will be determined as much by social, legal and political issues as by scientific and technical factors", conclude Adam Corner and Nick Pidgeon (2010). They review social and ethical implications of geoengineering the climate [3]. They advocate "upstream public engagement" as an essential step to keep science and society in dialogue about risks and opportunities of geoengineering. However, along with assessing the conditions that would nurture "acceptability of geoengineering" it is to debate: Most geoengineering technologies are "end of the pipe technologies". Should these technologies be part of the toolbox to tackle anthropogenic climate change? Is it an option to tackle climate change with "start of the pipe" or "along the pipe" technologies only?

References

[1] David Kramer (2013). Geoengineering researchers ponder ethical and regulatory issues. Physics Today vol. 66 (11).
[2] Alexandra Witze (2013). Volcanic-ash sensor to take flight. Nature, vol. 502.
[3] Adam Corner and Nick Pidgeon (2010). Geoengineering the climate: The social and ethical implications. Environment, vol. 52.

[a]
http://www.planetunderpressure2012.net/pdf/state_of_planet_declaration.pdf, "State of the Planet Declaration" adopted by the conference "Planet under Pressure" 26th-29th March 2012 in London.

[b]
http://www.geoengineering.ox.ac.uk/oxford-principles/principles/ In December 2009, the Oxford principles, initially drafted by scholars were endorsed by the to UK House of Commons Science and Technology Select Committee on "The Regulation of Geoengineering" making them a national-level policy statement on responsibly executed geoengineering research.

[c]
The injection height of 1.000m, following habitual definition, would be much below the stratosphere habitually having a lower limit around 10.000 m. However, "SPICE" is not a mis-name of the project. The cancelled experiment was part of a much bigger undertaking that apparently run also into difficulties because of a dispute about patent rights for geoengineering techniques (see: D. Cressy 2012, Geoengineering experiment cancelled amid patent row, Nature, Vol. (485): http://www.nature.com/news/cancelled-project-spurs-debate-over-geoengineering-patents-1.1069).

Credits for picture
Strong eruption of Karymsky volcano (Kamchatka) at 13th July 2004, by Alexander Belousov, Earth Observatory of Singapore, Singapore, Singapore, Finalist in the EGU Photo Contest 2011, Open access geosciences image repository of the European Geosciences Union (imaggeo).


Tuesday, December 3, 2013




Dr. Silvia Peppoloni (Secretary General of the IAPG) took an oral presentation at the 3rd World Conference on Research Integrity in Montreal (5-8 May 2013), titled "Geoethics: A challenge for research integrity in geosciences", by Silvia Peppoloni, Peter Bobrowsky and Giuseppe Di Capua.

See the video at: 
http://www.iapg.geoethics.org/gallery




Preamble of the Montreal Statement 
Research collaborations that cross national, institutional, disciplinary and sector boundaries are important to the advancement of knowledge worldwide. Such collaborations present special challenges for the responsible conduct of research, because they may involve substantial differences in regulatory and legal systems, organizational and funding structures, research cultures, and approaches to training. It is critically important, therefore, that researchers be aware of and able to address.

Read more and download the Montreal Statement at: 
http://www.iapg.geoethics.org/evidence/3rdWCRI


Friday, November 29, 2013



(Geophysical Research Letters, Vol. 40, 
1–5, doi:10.1002/2013GL058132, 2013)

Giancarlo Ciotoli, Giuseppe Etiope, Fabio Florindo, 
Fabrizio Marra, Livio Ruggiero and Peter E. Sauer



An interesting article, recently published, on gas emissions near the Rome's international airport, showing the importance of the knowledge of the geological features of the subsoil before its use for man-made works.
This is the final remark of the paper (thanks to Fabio Florindo, IAPG member):

"...In the absence of deformation in the Holocene cover, however, the gas emissions may be triggered by drilling operations, disrupting the impermeable cover and allowing the pressured gas to reach the surface. Future drilling and ground excavations in the Tiber delta (including the airport) should be based on accurate knowledge of gas distribution in the geologic substrate...".

Abstract
On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome’s international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum
systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.


Tuesday, November 26, 2013



(Annals of Geophysics, 55, 3, 2012; doi: 10.4401/ag-5562)

Riccardo Manni



Abstract
Paleontological museums should adopt a code of ethics in order to carry out restorations and to set-up exhibits without any falsification. 
Indeed, alterations can often be voluntary because an exhibit needs to be "beautiful", "realistic" or "charming" for the public. Therefore, the reconstructed parts are painted and then "soiled" artfully to look more realistic. An incomplete skeleton might be completed by reconstructing the missing bones, or by adding casts of other bones. Sometimes skeletons are "created", by assembling together bones from several specimens of the same species. Therefore, the museum staff should also inform visitors if a specimen has undergone such tampering, because otherwise each visitor is convinced that they have seen a "true" fossil. 
So all museum staff should be trained not only in the techniques of museums, but also in the ethics of restoration and installation.

Monday, October 21, 2013


Call for Abstracts
Session NH9.8
Geoethics: Ethical Challenges In Communication, Geoeducation And Management of Natural Hazards


Convener: Silvia Peppoloni
Co-Conveners: Susan W. Kieffer, Eduardo Marone, Yuriy Kostyuchenko, Joel Gill

Session description:
Geoethics deals with the ethical, social and cultural implications of Earth Sciences education, research and practice and the social role and responsibility of geoscientists in conducting their activities. It concerns theoretical and practical aspects of decisions regarding management and mitigation of geohazards, use of geo-resources, development of geoeducational strategies and the search for solutions to geo-environmental problems. Geoethics should become an essential point of reference for any action on land, water and atmosphere use for which all stake-holders and decision-makers are held accountable.
The 2012 and 2013 sessions on Geoethics at the EGU General Assembly were a great success and demonstrated the urgent need for the scientific community to reflect on how to best serve society, improve the quality of human life and promote sustainable development on planet Earth.
Among the critical ethical issues faced by geoscientists, natural hazards have a primary importance. The deaths, injuries, displacement and economic costs associated with them are increasing, in part due to rapid population increase, occupation of marginal/unsafe land and the misuse of land.
Many natural disasters can be prevented and/or their impact reduced. Geoscientists must play a fundamental role in protecting society, by educating the youths, communicating their knowledge and scientific results to the public and policy makers. This includes suggesting models, methods and ideas to inform and influence decision making for risk reduction programs, designing and implementing risk reduction strategies, organizing geoeducation activities and promoting environmentally sustainable and/or socially compatible use of natural resources.
Conveners invite authors to submit abstracts with their views, reflections, suggestions and experiences in an ethical perspective that could be helpful in understanding problems and finding solutions for a successful interaction between scientific community, media, institutions and local populations, with the overall aim of improving the effectiveness of measures to protect people and their assets from natural hazards.
The session is organized by the IAPG - International Association for Promoting Geoethics (http://www.iapg.geoethics.org/).

The abstract submission deadline is 16 January 2014, 13:00 CET.

In case you would like to apply for financial support, please submit an application no later than 29 November 2013.



Sunday, October 13, 2013


Cyclone Phailin in India


The Cyclone Phailin is striking India. Dr. Shrikant Limaye, Vice-President of the IAPG, asks to publish a "Guidelines document" for disaster management for cyclones.
Please, kindly forward the guidelines to your colleagues and friends in areas affected by cyclones. 
Thank you.


*************************

Guidelines for disaster management for cyclones


The actions that need to be taken in the event of a cyclone threat can broadly be divided into four classes, viz., (i) immediately before the cyclone season; (ii) when cyclone alerts and warnings are on; (iii) when evacuations are advised; and (iv) when the cyclone has crossed the coast.


(i) Before the cyclone season

Check the house; secure loose tiles, carry out repair works for doors and windows Remove dead woods or dying trees close to the house; anchor removable objects like lumber piles, loose tin sheds, loose bricks, garbage cans, sign-boards etc. which can fly in strong winds Keep some wooden boards ready so that glass windows can be boarded if needed Keep a hurricane lantern filled with kerosene, battery operated torches and enough dry cells Demolish condemned buildings Keep some extra batteries for transistors Keep some dry non-perishable food always ready for emergency use

(ii) When the cyclone starts

Listen to the radio (All India Radio stations give weather warnings).
Keep monitoring the warnings. This will help you to prepare for a cyclone emergency.
Pass on the information to others.
Ignore rumors and do not spread them; this will help to avoid panic situations.
Believe in the official information
When a cyclone alert is on for your area continue normal working but stay alert to the radio warnings.
Remember that a cyclone alert means that the danger is within 24 hours. Stay alert.
When your area is under cyclone warning get away from low-lying beaches or other low-lying areas close to the coast Leave early before your way to high ground or shelter gets flooded Do not delay and run the risk of being marooned If your house is securely built on high ground take shelter in the safer part of the house. However, if asked to evacuate do not hesitate to leave the place.
Board up glass windows or put storm shutters in place.
Provide strong suitable support for outside doors.
If you do not have wooden boards handy, paste paper strips on glasses to prevent splinters. However, this may not avoid breaking windows.
Get extra food, which can be eaten without cooking. Store extra drinking water in suitably covered vessels.
If you are to evacuate the house move your valuable articles to upper floors to minimize flood damage.
Have hurricane lantern, torches or other emergency lights in working conditions and keep them handy.
Small and loose things, which can fly in strong winds, should be stored safely in a room.
Be sure that a window and door can be opened only on the side opposite to the one facing the wind.
Make provision for children and adults requiring special diets.

If the centre of the cyclone is passing directly over your house there will be a lull in the wind and rain lasting for half and hour or so. During this time do not go out; because immediately after that very strong winds will blow from the opposite direction.
Switch off electrical mains in your house.
Remain calm.

(iii) When evacuation is instructed

Pack essentials for yourself and your family to last you a few days, including medicines, special foods for babies and children or elders.
Head for the proper shelter or evacuation points indicated for your area.
Do not worry about your property
At the shelter follow instructions of the person in charge.
Remain in the shelter until you have been informed to leave

(iv) Post-cyclone measures

You should remain in the shelter until informed that you can return to your home.
You must get inoculated against diseases immediately.
Strictly avoid any loose and dangling wires from the lamp posts.
If you are to drive, drive carefully.
Clear debris from your premises immediately.
Report the correct loss to appropriate authorities.



Tuesday, October 1, 2013


The Impact of the Geological Sciences on Society


A new issue of Geological Society of America Special Papers "The Impact of the Geological Sciences on Society" (Vol. 501) is available online:



Articles

M.E. (Pat) Bickford
Foreword
Geological Society of America Special Papers, 2013, 501, p. v, doi:10.1130/2013.2501(00)

Jonathan G. Price
The challenges of mineral resources for society
Geological Society of America Special Papers, 2013, 501, p. 1-19, doi:10.1130/2013.2501(01)

Scott W. Tinker, Harry Lynch, Mark Carpenter, and Matthew Hoover
Global energy and the role of geosciences: A North American perspective
Geological Society of America Special Papers, 2013, 501, p. 21-51, doi:10.1130/2013.2501(02)

John Bredehoeft
U.S. water resources—Cleaner and more valuable
Geological Society of America Special Papers, 2013, 501, p. 53-67, doi:10.1130/2013.2501(03)

Ronald Amundson and Garrison Sposito
Bridging the divide: Soil resources and the geosciences on a cultivated planet
Geological Society of America Special Papers, 2013, 501, p. 69-80, doi:10.1130/2013.2501(04)

Mary Lou Zoback, Eric Geist, John Pallister, David P. Hill, Simon Young, and Wendy McCausland
Advances in natural hazard science and assessment, 1963–2013
Geological Society of America Special Papers, 2013, 501, p. 81-154, doi:10.1130/2013.2501(05)

Syed E. Hasan, Robert B. Finkelman, and H. Catherine W. Skinner
Geology and health: A brief history from the Pleistocene to today
Geological Society of America Special Papers, 2013, 501, p. 155-164, doi:10.1130/2013.2501(06)

Michael E. Wysession and Linda R. Rowan
Geoscience serving public policy
Geological Society of America Special Papers, 2013, 501, p. 165-187, doi:10.1130/2013.2501(07)

Barbara J. Tewksbury, Cathryn A. Manduca, David W. Mogk, and R. Heather Macdonald
Geoscience education for the Anthropocene
Geological Society of America Special Papers, 2013, 501, p. 189-201, doi:10.1130/2013.2501(08)

About the Contributors
Geological Society of America Special Papers, 2013, 501, p. 203-206, doi:10.1130/2013.2501(09)



Saturday, September 28, 2013


New column on public policy and security: joint action of Ukrainian Section of the IAPG and “The Day” Newspaper (Ukraine)


Syndrome of Profit Iona: on the ethics in geo-sciences, catastrophes, resources, and mutual responsibility

by Yuriy Kostyuchenko 


“Syndrome of Profit Iona” – is the professional deviation of the experts in field of security and risk analysis. It is characterized by the difficult complex of psycho-emotional experiencing conditioned by understanding of unavoidability of catastrophe. At the same time you understand clear that nobody wish listen and to recognize a danger, so the catastrophe is inevitable. However a professional duty and own conscience does not allow to say nothing…

In the modern world too much depends on the personal responsibility. And politicians, and scientists, need an active public query, feed-backs, society help. For this purpose, together with mass media and public activists, they should give exact and adequate information to society. Only in this case we can rich the permanent decision of urgent problems. We can survive only together…

Read more at (in Ukrainian): 
_________________________________________________________________________________

Discussion on Geo-Science role in public security, ecology, and sustainable development

special thanks to Mr. Olexandr Holoborodko
Read more at (in Ukrainian):